Evolution turned this ant into a living drill

first_img By Jake BuehlerAug. 24, 2018 , 9:55 AM A. Khalife et al., Frontiers in Zoology 10.1186 (2018) Click to view the privacy policy. Required fields are indicated by an asterisk (*) So Peeters and his team took a closer look. The researchers removed ant-inhabited branches from trees in Mozambique and South Africa, sending them back to the lab in Paris. There they combined x-ray microtomography (a type of 3D x-ray imaging for tiny objects) and high-powered microscopes to visualize the ants’ skeletomuscular system, focusing on the anatomy of the head, jaws, and legs.It turns out that their big domes house more than just silk glands—huge muscles fill the head, anchored to short, sharp mandibles, the team reports in Frontiers in Zoology. These muscles provide the jaws with enormous chiseling power that can tunnel through hardwood. In contrast, ants with weaker jaws typically have to make do with settling in rotten wood or tunnels already excavated by boring beetles. That’s because chewing dry wood—whose fibers are brittle and easily broken—is easier than chewing through healthy, moist wood, Peeters explains. Even the jaw opening muscles are stronger than those of any species of ant known, a characteristic Peeters thinks may be useful in pushing wood debris out of the way while tunneling.The researchers also found that the mandibles themselves were remarkably well-suited to a life of chewing. Their wide base made them efficient levers, and analysis of their tips revealed high concentrations of zinc embedded within the exoskeleton.Zinc-reinforced “heavy element biomaterials” like these are common in invertebrates, says Robert Schofield, a biophysicist at the University of Oregon in Eugene who was not involved in the study. They’re found in body parts that sustain heavy use, such as spider fangs and marine worm jaws. The nanoscale clusters of zinc are bound into the chitin matrix, imparting hardness without increasing the risk of breakage. For ants that depend on these tools to build and eat with, that’s pretty important. “If a sharp tip gets damaged, then they’re dead,” Schofield says.The legs of Melissotarsus workers are also superbly adapted. The researchers found that the legs—perpetually bent close to the body—have strong muscles for bracing against tunnel walls. The “basitarsus” of the ants’ feet (analogous to a heel) is also enlarged, and—with the addition of peglike bristles—provides extra grip when bearing down. This keeps workers rigidly anchored in place, counteracting the intense chewing forces. But the adaptations come with a cost: The ants’ legs are so dramatically modified that the insects can no longer walk on a flat surface (see video, below). Country * Afghanistan Aland Islands Albania Algeria Andorra Angola Anguilla Antarctica Antigua and Barbuda Argentina Armenia Aruba Australia Austria Azerbaijan Bahamas Bahrain Bangladesh Barbados Belarus Belgium Belize Benin Bermuda Bhutan Bolivia, Plurinational State of Bonaire, Sint Eustatius and Saba Bosnia and Herzegovina Botswana Bouvet Island Brazil British Indian Ocean Territory Brunei Darussalam Bulgaria Burkina Faso Burundi Cambodia Cameroon Canada Cape Verde Cayman Islands Central African Republic Chad Chile China Christmas Island Cocos (Keeling) Islands Colombia Comoros Congo Congo, the Democratic Republic of the Cook Islands Costa Rica Cote d’Ivoire Croatia Cuba Curaçao Cyprus Czech Republic Denmark Djibouti Dominica Dominican Republic Ecuador Egypt El Salvador Equatorial Guinea Eritrea Estonia Ethiopia Falkland Islands (Malvinas) Faroe Islands Fiji Finland France French Guiana French Polynesia French Southern Territories Gabon Gambia Georgia Germany Ghana Gibraltar Greece Greenland Grenada Guadeloupe Guatemala Guernsey Guinea Guinea-Bissau Guyana Haiti Heard Island and McDonald Islands Holy See (Vatican City State) Honduras Hungary Iceland India Indonesia Iran, Islamic Republic of Iraq Ireland Isle of Man Israel Italy Jamaica Japan Jersey Jordan Kazakhstan Kenya Kiribati Korea, Democratic People’s Republic of Korea, Republic of Kuwait Kyrgyzstan Lao People’s Democratic Republic Latvia Lebanon Lesotho Liberia Libyan Arab Jamahiriya Liechtenstein Lithuania Luxembourg Macao Macedonia, the former Yugoslav Republic of Madagascar Malawi Malaysia Maldives Mali Malta Martinique Mauritania Mauritius Mayotte Mexico Moldova, Republic of Monaco Mongolia Montenegro Montserrat Morocco Mozambique Myanmar Namibia Nauru Nepal Netherlands New Caledonia New Zealand Nicaragua Niger Nigeria Niue Norfolk Island Norway Oman Pakistan Palestine Panama Papua New Guinea Paraguay Peru Philippines Pitcairn Poland Portugal Qatar Reunion Romania Russian Federation Rwanda Saint Barthélemy Saint Helena, Ascension and Tristan da Cunha Saint Kitts and Nevis Saint Lucia Saint Martin (French part) Saint Pierre and Miquelon Saint Vincent and the Grenadines Samoa San Marino Sao Tome and Principe Saudi Arabia Senegal Serbia Seychelles Sierra Leone Singapore Sint Maarten (Dutch part) Slovakia Slovenia Solomon Islands Somalia South Africa South Georgia and the South Sandwich Islands South Sudan Spain Sri Lanka Sudan Suriname Svalbard and Jan Mayen Swaziland Sweden Switzerland Syrian Arab Republic Taiwan Tajikistan Tanzania, United Republic of Thailand Timor-Leste Togo Tokelau Tonga Trinidad and Tobago Tunisia Turkey Turkmenistan Turks and Caicos Islands Tuvalu Uganda Ukraine United Arab Emirates United Kingdom United States Uruguay Uzbekistan Vanuatu Venezuela, Bolivarian Republic of Vietnam Virgin Islands, British Wallis and Futuna Western Sahara Yemen Zambia Zimbabwe Sign up for our daily newsletter Get more great content like this delivered right to you! Country A. Khalife et al., Frontiers in Zoology 10.1186 (2018) center_img A scanning electron microscopy image of the wood-cutting mandibles of a young Melissotarsus worker. Evolution turned this ant into a living drill Artist’s conception of a Melissotarsus worker boring a tunnel. While tunneling, these ants brace themselves against the tunnel walls using strong, specialized legs and basitarsi “heels” to anchor themselves in place. Email Anyone who’s attempted to cut down a tree by hand knows just how difficult it is to chop through living wood. It turns out wood-boring ants do, too—so they’ve transformed themselves into bizarre, living drills. A new study reveals that extreme adaptations unlike anything seen in other ants let them carve complicated tunnel networks in their host trees.Not much is known about Melissotarsus ants—native to continental Africa and Madagascar—because they’re only a few millimeters long and never leave the carved galleries of their trees. Inside, the ants are thought to herd sedentary scale insects for food, eating their tasty wax secretions or even their meat. Worker ants have two pairs of back legs that perpetually angle upward and a bulbous head loaded with silk glands (a unique feature among ants). Entomologists have long thought these features must assist with the ants’ unconventional lifestyle, but they weren’t sure exactly how.“It was not obvious how they could derive the strength to chew live wood,” says Christian Peeters, a research biologist at Sorbonne University in Paris and senior author on the study. “This is a great paper on an amazing ant,” says Andy Suarez, an entomologist at the University of Illinois in Urbana, who was not involved in the study. “This is the only example I know of where an ant has evolved a lifestyle … living in [the] wood of living trees that requires workers to be able to tunnel through the wood itself.”Melissotarsus has evolved an “irreversible commitment” to life inside the trees, Peeters says, forsaking the outside world to tend to their scale insect herds. The findings illustrate the extraordinary results that evolutionary specialization can produce, turning once highly mobile ants into tireless power tools.last_img

Leave a Reply

Your email address will not be published. Required fields are marked *